Project
Differential embedding of hippocampal output neurons during memory-related oscillations
Memory consolidation requires fast network oscillations and involves the transfer of information from the hippocampus via the subiculum to various cortical targets. Subicular pyramidal cells exhibit regular or burst firing electrophysiological profiles and project to different target areas. Using whole-cell patch−clamp recordings in awake mice we demonstrated that during sharp wave−ripple complexes (SWRs), bursting cells are activated whereas regular firing cells are silenced, implicating preferential input to target areas of bursting cells. Furthermore, with multiple recordings in vitro we have identified the principles that underlie the differential recruitment during sharp wave ripples: regular firing cells are more synaptically inhibited, while the bursting neurons receive excitatory input to a much greater extent. Our combined analyses allow us to conclude that the subiculum enables the separation of two parallel streams of information. The experiments outlined in this proposal are designed to answer the numerous questions that arise from the above observations: which cortical areas and cell types are targeted by subicular cells? Do SWRs propagate into these cortical areas? Is this propagation functionally relevant for memory consolidation? We will use physiological techniques − both in vitro and in vivo − in combination with optogenetics to investigate the functional connectivity and answer the above questions.
Team
-
Prof Dr Dietmar Schmitz
Charité-Universitätsmedizin Berlin
Head Schmitz Lab
-
Dr Anton Dvorzhak
Charité-Universitätsmedizin Berlin
Postdoc A02
-
Dr Noam Nitzan
Buzsaki lab
(A02 Alumnus)
-
Anne Voigt
Charité-Universitätsmedizin Berlin
PhD A02
-
Dr Marta Orlando
Charité-Universitätsmedizin Berlin
Associated Postdoc A01/A02
Publications
Microcircuits for spatial coding in the medial entorhinal cortex
John J Tukker, Prateep Beed, Michael Brecht, Richard Kempter, Edvard I Moser, and Dietmar Schmitz
Physiol Rev. 102:653–688 (2022)
Recruitment of release sites underlies chemical presynaptic potentiation at hippocampal mossy fiber boutons
Marta Orlando, Anton Dvorzhak, Felicitas Bruentgens, Marta Maglione, Benjamin R. Rost, Stephan J. Sigrist, Jörg Breustedt, Dietmar Schmitz
PLoS Biol. 19(6):e3001149 (2021)
A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions
Miguel Rodríguez de los Santos, Marion Rivalan, Friederike S. David, Alexander Stumpf, Julika Pitsch, Despina Tsortouktzidis, Laura Moreno Velasquez, Anne Voigt, Karl Schilling, Daniele Mattei, Melissa Long, Guido Vogt, Alexej Knaus, Björn Fischer-Zirnsak, Lars Wittler, Bernd Timmermann, Peter N. Robinson, Denise Horn, Stefan Mundlos, Uwe Kornak, Albert J. Becker, Dietmar Schmitz, York Winter and Peter M. Krawitz
Proc Natl Acad Sci USA. 118(2):e2014481118 (2021)
Layer 3 pyramidal cells in the medial entorhinal cortex orchestrate up-down states and entrain the deep layers differentially
Prateep Beed, Roberto de Filippo, Constance Holman, Friedrich W. Johenning, Christian Leibold, Antonio Caputi, Hannah Monyer, Dietmar Schmitz
Cell Reports. 33(10):108470 (2020)
Movement disorders after hypoxic brain injury following cardiac arrest in adults
F. Scheibe, W. J. Neumann, C. Lange, M. Scheel, C. Furth, M. Köhnlein, P. Mergenthaler, J. Schultze‐Amberger, P. Triebkorn, P. Ritter, A. A. Kühn, A. Meisel
Eur J Neurol. 27(10):1937-194 (2020)
Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway
Noam Nitzan, Sam McKenzie, Prateep Beed, Daniel Fine English, Silvia Oldani, John J Tukker, György Buzsáki and Dietmar Schmitz
Nat Commun. 11(1):1947 (2020)